
Data manipulation and
visualization with R

2.1 Importing data

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

2.1. Importing data

Now we know the basics of R and can apply our knowledge to work with data.

All data we used so far was already pre-installed in R. In this chapter we will learn how to import external data from files. The most commonly used
file formats for statistical data are .xlsx used by Microsoft Excel and the comma separated values format (csv).

We will look at both formats and how to import data into RStudio through the script. For this purpose we will also look at directories and how to
locate data on the computer.

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

Introduction

File formats

The .xlsx format is used by Microsoft Excel.

The format can only be opened with Excel, it is therefore called a proprietary file format.
One can open an Excel file with a text editor, but the data will not be presented in a
readable way

Each piece of data is stored in an individual cell. The cell not only contains data but also
properties like fonts and text sizes, background and text colors. The displayed value can
also be the result of an equation that is only shown when the user selects the cell via
mouse cursor or keyboard. Therefore, Excel files need to store a lot of information besides
the actual data, which usually requires much larger files.

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

.xlsx files

File formats

Text files can be formatted as .csv files (comma separated values) to store information in
a simple way that requires little storage capacity. csv is an open-source format and can be
accessed and edited by many different programs, like a text editor or RStudio.

As the name implies, values are separated by commas to indicate individual pieces of
information. Naturally, commas must not be used within the data itself to avoid messing
with the data format. Character-based data like “Bond, James” require quotation marks to
indicate that included commas are part of a character string. Commas within quotation
marks will not separate the data.

German-speaking countries have a different way of writing decimals: Here, a comma is
used instead of a period. Therefore, data files from German sources may use a “;” to
separate data and a “,” for decimal numbers. Some files even use tabs (“ “) as separators.
The formatting style should always be checked before the data import to ensure the right
type of separators and decimals are used by the code.

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

.csv files

International formatting using “,” as separator
"index","number","pokemon","hp"
"1","001","Bulbasaur",45.0
"2","002","Ivysaur",60.0
"3","003","Venusaur",80.0
"4","003M","Mega Venusaur",80.0

German formatting using “;” as separator
"Nr","Nummer";"Pokemon";"TP"
"1";"001";"Bisasam";45,0
"2";"002";"Bisaknosp";60,0
"3";"003";"Bisaflor";80,0
"4";"003M";"Mega Bisaflor";80,0

File formats

Both file formats have their advantages and disadvantages.

Excel files are easy to edit within Excel and can be formatted
in a presentable fashion. They, however, require a Microsoft
licence and the files are often several MB large, which might
impede sending them via mail.

CSV files are small in size and can easily be sent via mail.
Their lack of formatting makes them unpresentable and
difficult to read. They are mostly used to exchange data,
especially among different programs or users.

Both formats can be converted into each other.

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

Comparison: .xlsx and .csv
.xlsx .csv

Contains data, as well as information
about formatting and computation
formulas

Contains only data as plain text

Can be formatted to be visually pleasing
and accessible

Can be difficult to read due to lack of
formatting

File is proprietary and can only be
accessed by Microsoft Office software

File is open-source and can be accessed
by many different programs

The files can easily become large in size
(several MB) due to additional information
stored within the file

Files remain relatively small in size even
with larger data sets (several KB)

Easy to edit files directly in Excel Usually require software (like RStudio) to
effectively edit data

Can be exported to .csv Can be imported by Excel

File formats

Both formats can be converted into each other.

A: The formatted Excel table can be “saved as” a .csv file when the file format is selected
and the suffix is added to the file’s name. It loses all formatting and formulas. In this
example the “sum” is no longer an equation, but only a plain integer.

B: The .csv file can be imported back to Excel. There, under the tab “Data”, the option “From
Text/CSV” (the exact wording might differ depending on the program version) can be
selected. A popup window will display a few options, e.g. the manual selection of the
separator. The imported data lacks formatting and formulas.

C: The formatting has to be added manually if desired. The user should therefore only
format the data when no further conversions are necessary.

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

Conversion between .xlsx and .csv

A B

C

Locating files

Before we can import data, we need to let the program know where the data is located.

R can find all (non-restricted) files as long as the complete path to the file is specified. As
the path can be rather long, it makes sense to determine a folder as a working directory
(wd) to declare this as the default place to look for files. The wd is also the place where
exported files, like images, are stored.

A wd is declared with setwd(path), where path is a string with a folder path like
“C:/Users/Scully/Xfiles”. Please note that the path needs to use “/” to separate folders and
not “\”. The path must lead to a folder, and not a specific file itself. Only one folder can be
the current working directory at a time! getwd() shows the current path on screen.

The dir() function, short for “directory”, lists all files stored in the current working directory.

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

Directories: Where is the data?

set path to “C:/…”
path <- "C:/Users/Scully/Xfiles"

set working directory to “C:/…”
setwd(path)

show path of current working directory
getwd()
output: "C:/Users/Scully/Xfiles"

check content of current working directory
dir()
output: "aliens_in_the_kitchen.mp4"
"i_want_to_believe.png"

Locating files

Found the files you were looking for? Now grep them! “grep” is short for “global search for
a regular expression and print out matched lines”. The function grep() uses regular
expressions to select elements from a vector that fulfill a specific condition. (We will not
go into detail with “regular expression”, but it is worth looking them up.)

This is useful when the wd contains more than one file. In this example we have two .csv
files and an .xlsx file. grep(pattern, vector) requires first the selection condition (e.g.
“*.xlsx” selects all files ending in “.xlsx”) and then the vector containing all files. The
function grep() returns the index of matches, while grepl() returns a logical.

Applying the return of either grep() or grepl() to the original vector of files returns a
selection of files that fulfill the condition. The details of data selection will be explained
more thoroughly in the following chapter “2.2. Selecting data”.

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

Directories: Grep everything you need!

show all files in directory
dir()
output: "aliens.csv" "area51.csv"
"unsolved_mysteries.xlsx"

Select specific files
grep("*.xlsx", dir())
output (index): 3

grepl("*.xlsx", dir())
output (logical): FALSE FALSE TRUE

Select all xlsx
dir()[grepl("*.xlsx", dir())] # "aliens.csv" "area51.csv"

Select all csv
dir()[grepl("*.csv", dir())] # "unsovled_mistories.xlsx"

Reading files

To read Excel files, we first need to install the “readxl” package and add it to
the library. The installation may warn that the package “Rtools” needs to be
installed as well.

The function read_excel() reads the first entire table sheet within the Excel
file. The only mandatory input is, of course, the filename (or its complete
path if not stored within the current working directory).

The argument “skip=n” ignores the first n rows. This is useful when the head
of the Excel table differs, e.g. by only having a username, source or date in
the first rows. The range argument reads only selected cells, while the sheet
argument reads only selected table sheets within the file. The range can also
be specified as “Sheet!Range”, as shown in the last example.

The “population_1950.xlsx” file is provided for this course!
(source: https://service.destatis.de/bevoelkerungspyramide/#!y=1950&a=32,56&v=2)

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

Reading Excel files

install “readxl” package and load it.
install.packages("readxl")
library("readxl")

#read excel file
data <- read_excel("Population_1950.xlsx")

#skip rows or select range
columns <- c("Index", "Year", "Sex", "Age", "Count")

data <- read_xlsx("Population_1950.xlsx", skip=2,
col_names=columns)

data <- read_xlsx("Population_1950.xlsx", range="A1:E100",
sheet="Table1", col_names=columns)

data <- read_xlsx("Population_1950.xlsx", range="Table1!A3:E100",
col_names=columns)

Reading files

The read_csv() function is a standard function and does not require any further
packages.

Only the input of a file name is mandatory, the function will use default settings for
the other arguments. By default the separator (sep) will be set to “,” and the decimal
sign (dec) to “.”. As mentioned earlier, some sources may use “;” or “ “ as separators
and “.” as decimal signs. If “sep” or “dec” are set incorrectly, the data is messed up.

The “header” argument is set to TRUE, i.e. the function expects the csv file’s first row
to contain the column names. This is usually the case in all csv files obtained from
reliable sources like statistical agencies. If the first row contains regular data, it is
imperative to set the “header” argument to FALSE. We can then use the names()
function to manually specify column names, once the data is imported and stored.

The “population_1950.csv” file is provided for this course!
(source: https://service.destatis.de/bevoelkerungspyramide/#!y=1950&a=32,56&v=2)

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

Reading .csv files

read csv file
data <- read.csv("population_1950.csv")

specify separator and decimal sign
data <- read.csv("population_1950.csv", sep=",", dec=".")

specify separator and decimal sign (incorrectly)
data <- read.csv("population_1950.csv", sep=";", dec=",")

specify header
data <- read.csv("population_1950.csv", sep=",", dec=".",
header=FALSE)

names(data) <- c("Index", "Year", "Sex", "Age", "Count")

Reading files

With the help of a for-loop, it is possible to read multiple .csv files in a row and
combine them to one dataframe.

First, we use the previously described grep() or grepl() functions to select all .csv
files in our working directory. We create an empty dataframe called “data”. (Please
note: We use the name “data” for the sake of simplicity and space efficiency. A name
like “population_1950_2018” would be more appropriate.)

The for-loop goes through each element in the list, conventionally represented by the
variable “i”, reads the file and combines it row-wise (rbind()) to our data. Each
iteration adds to the same dataframe. This requires the files to have a consistent
way of naming their columns.

To omit this step for the next session, we use write.csv(data, “outputfile.csv”) to
store the combined data in one file within the current directory.

2.1 Importing data | Hannes Seller, Jonathan Young (2020)

Reading multiple .csv files and writing new files

select all .csv files
csv_files <- dir()[grepl("*.csv", dir())]

create empty dataframe
data <- data.frame()

loop through all files
for(i in csv_files){
 # read csv and add all rows to data
 data <- rbind(data, read.csv(i))
}

display data
data

create new .csv file
write.csv(data, "data.csv")

