
Data manipulation and
visualization with R

2.2 Selecting data

Hannes Seller, Jonathan Young (2020)

2.2 Selecting data | Hannes Seller, Jonathan Young (2020)

We learned about the different data types in chapter 1.2. While R implements consistent rules for the selection of data from data containers, each
container type has its specific particularities. In this lesson we will look at data selection methods for vectors, matrices, dataframes and lists.

This chapter is rather short in comparison and could have been integrated into the basics. However, this is a topic a beginner might want to read
again when the occasion for a certain method of data selection might arise. We therefore kept it short and as an individual chapter.

2.2 Selecting data

Vectors (using indices)

This chapter deals with the selection of individual data from any data
container. A selection is usually indicated by square brackets which
specify the index or indices or data to be selected.

Please note that R does not use zero-based indexing as many other
common languages like Java, JavaScript, C or Python. In R the first
index is 1.

Vectors, matrices, DFs and lists have slightly different data selection
rules depending on their dimensions and specific data structures.

Vectors use a simple square bracket to select and subset data.
Positive indices select data, negative indices exclude data.

creating a vector of characters
vec <- c("a", "b", "c", "d", "e", "f")

vec[1] #output: "a"
vec[6] #output: "f"
vec[0] #output: character(0) … an empty vector as there is no index 0

using a vector of indices to select from a vector
vec[c(1,3,5)] # output: "a" "c" "e" (index 1, 3 and 5)

using a series to select from a vector
vec[1:3] # output: "a" "b" "c" (index 1 to 3)

using a vector of different series to select from a vector
vec[c(1:2, 4:5)] # output: "a" "b" "d" "e" (index 1 to 2 and 4 to 5)

using an exclusion:
vec[-3] # output: "a" "b" "d" "e" "f" (all but index 3)vector[index]

Data selection

2.2 Selecting data | Hannes Seller, Jonathan Young (2020)

Besides indices, we can also use logicals to select data from a
vector.

A logical vector (e.g. c(TRUE, FALSE, FALSE)) must have the same
length as the vector it is applied to. If the element with index n of the
logical vector is TRUE, the element with index n will be selected from
the data vector. If FALSE, the data is omitted.

A conditional like “vec > 15” returns TRUE for all elements strictly
bigger than 15 or FALSE for all elements smaller than or equal to 15.
Applying the resulting logical vector to the data containing vector, all
elements will be selected that are strictly bigger than 15.

Vectors (using logicals) # creating a vector of integers
vec <- c(4, 8, 15, 16, 23, 42)

which element is bigger than 15?
vec > 15
output: TRUE TRUE TRUE TRUE TRUE TRUE

which element fulfills this condition?
vec[vec > 15]
output: 16, 23, 42

which element is at least 15 and smaller than 42?
vec[vec >= 15 & vec < 42]
output: 15, 16, 23

vector[vector condition]

Data selection

2.2 Selecting data | Hannes Seller, Jonathan Young (2020)

The operator %in% checks whether an element of vector 1 is also an
element of vector 2.

The operator also returns a logical vector of TRUE and FALSE
indicating for each index whether the element exists in both vectors.

In the example, we have the numbers 1 to 10 as “a” and 5 to 15 as “b”.
Naturally, the numbers 5, 6, 7, 8, 9 and 10 exist both in “a” and in “b”.

The condition can be inverted by using !(condition), as seen in the
last example, showing only elements that exist in a but not in b.

Vectors (using %in%) # creating two vectors of integers
a <- c(1:10) # 1 to 10
b <- (5:15) # 5 to 15

which element of a is in b?
a %in% b
FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

which element fulfills this condition?
a[a %in% b]
result: 5 6 7 8 9 10

which element does not fulfill this condition?
a[!(a %in% b)]
result: 1 2 3 4Vector1[vector1 %in% vector2]

Data selection

2.2 Selecting data | Hannes Seller, Jonathan Young (2020)

Data selection

Matrices

With matrices the selection slightly differs as they have two
dimensions: [X, Y], where X indicates the row and Y the column.

The indices are shown next to the matrix, for example “a” has the
index [1,1] and “f” [3,2]. The matrix below will be used for the
following examples on the side.

selecting a single data point
mat[1,2] # output: "d" (row 1, column 2)

selecting an entire row (by not specifying a column) as vector
mat[1,] # output: "a" "d" (row 1)

selecting an entire column (by not specifying a row) as vector
mat[,2] # output: "d" "e" "f" (column 2)

selecting with series
Mat[2:3,1:2] # rows 2 to 3 and columns 1 to 2
output:
 [,1] [,2]
[1,] "b" "e"
[2,] "c" "f"

using exclusion
Mat[-1,2] # output: "e" "f" (all rows but index 1 and column 2)

matrix[index row, index_column]

creating a matrix with two columns
mat <- matrix(c("a", "b", "c", "d", "e", "f"), ncol=2)
 [,1] [,2]
[1,] "a" "d"
[2,] "b" "e"
[3,] "c" "f"

2.2 Selecting data | Hannes Seller, Jonathan Young (2020)

Data selection

Dataframes

The data stored within DFs can be accessed in the same manner as
matrices. However, DFs provide more options to select data based on
values.

As each column of a DF has a specific name, it can be selected by
calling its name using this formula:

An alternative way is shown below. Using indices with double and
single square brackets can be useful when the user loops through
multiple columns using an automated script. Nonetheless, the way
shown above is generally preferable.

creating four vectors
patient <- c("A", "B", "C", "D")
id <- c(1213,4681,1348,2347)
height <- c(183,163,177,165)
status <- c(TRUE, FALSE, TRUE, TRUE)

combining four vectors to a dataframe
df <- data.frame(cbind(patient, id, height, status))

conversion of height from factor to double *
df$height <- as.double(levels(df$height)[df$height])

For the following examples we use this dataframe:

dataframe$column_name

dataframe[[column_index]][row_index]

2.2 Selecting data | Hannes Seller, Jonathan Young (2020)

* see chapter 1.2 for details.

Data selection

Dataframes

The example on the side shows different ways to select a specific
column in a dataframe.

dataframe$column_name is preferable when the user wants to
perform a selection based on the column name. Every column name
must be unique (and is forced to be unique, if necessary). Therefore,
the name always refers to a specific column.

The dataframe can also be treated as a matrix using dataframe[X,Y]
to access individual values or whole columns. This is only useful with
small datasets where the indices are easy to handle.

Alternatively the user can treat the dataframe like a list object by
calling dataframe[[column_index]] for an individual column or
dataframe[[column_index]][row_index] for an individual value.

 patient id height status
1 A 1213 183 TRUE
2 B 4681 163 FALSE
3 C 1348 177 TRUE
4 D 2347 165 TRUE

selecting column “patient” (factor)
df$patient
df[,1]
df[[1]]
output: [1] A B C D; Levels: A B C D

selecting column “height” (double)
df$height
df[,3]
Df[[3]]
output: [1] 183 163 177 165

2.2 Selecting data | Hannes Seller, Jonathan Young (2020)

Data selection

Lists (of vectors)

Lists can organize multiple data containers (e.g. vectors, dataframes
or even other lists) into one object.

The example on the right combines three vectors into a list. When
calling the list, its hierarchy is shown using [[index_list_item]] and
[index_data_container]. We have three list items (vectors) each
containing three integers.

Accessing the list with list_name[index] returns the desired data still
wrapped into a list, while list_name[[index]] only returns the stored
data container itself. With list_name[[index]][index] we can access the
stored data directly. Even index ranges can be applied.

first item of list (still a list)
d[1] # selection with []
[[1]]
[1] 1 2 3

first item of list (a vector)
d[[1]] # selection with [[]]
[1] 1 2 3

target specific value
d[[1]][2] # selection with [[]][]
[1] 2

target specific values
> d[[1]][1:2] # s. with [[]][x:y]
[1] 1 2

list of three vectors
a <- c(1,2,3)
b <- c(4,5,6)
c <- c(7,8,9)
d <- list(a,b,c)

that is how our list looks like:
[[1]]
[1] 1 2 3

[[2]]
[1] 4 5 6

[[3]]
[1] 7 8 9

2.2 Selecting data | Hannes Seller, Jonathan Young (2020)

Data selection

Lists (of data.frames or matrices)

Dataframes can also be stored in lists. This can be handy when
several dataframes were created that do not need to clutter the
global environment.

In this example two dataframes were stored within the list “d”. Once
the dataframe is accessed via list_name[[index]], the selection with
df$column_name becomes available. The returned vector can further
be accessed with a vector[] selector.

As dataframes can also be treated as matrices, the selection with
[row, column] is another option to select specific data. They will be
returned as a reduced dataframe if entire rows or columns are
selected. If only a single value is wanted, the selection returns this
value as a length 1 vector.

access with column name
d[[1]]$a # first df, column a
[1] 1 2 3

column name and index
d[[1]]$a[2]
[1] 2

first item, first column / row
d[[1]][,1]
 a
1 1
2 2
3 3

first item of list (still a list)
D[[1]][1,2]
[1] 2

list of three dataframes
a <- c(1,2,3)
b <- c(4,5,6)
c <- c(7,8,9)
df_ab <- as.data.frame(cbind(a,b))
df_ac <- as.data.frame(cbind(a,c))
d <- list(df_ab, df_ac)

[[1]]
 a b
1 1 4
2 2 5
3 3 6

[[2]]
 a c
1 1 7
2 2 8
3 3 9

d[[1]][1,]
 a b
1 1 4

2.2 Selecting data | Hannes Seller, Jonathan Young (2020)

2.2 Selecting data

What we learned

In this chapter we learned about the particularities of selecting specific pieces of data from data containers.

As a rule of thumb: the [square brackets] always indicate data selection methods. If multiple hierarchies exist in the data container, e.g. in lists, we
can use [[double square brackets]] for the highest level and [regular square brackets] for each subordinate level.

In many cases, dataframes are a better container type than matrices because they offer more options to access specific parts of the data within.

Please come back to this chapter when you need to refresh your knowledge about data selection methods. We kept this chapter short and
concise for this purpose.

In the next chapter we will look at ways to manipulate data using the “dplyr” package.

2.2 Selecting data | Hannes Seller, Jonathan Young (2020)

