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2.3 Data manipulation with dplyr

We already learned the basics of R programming, how to import data and how to select specific information from data containers. In this lesson we 
will explore the package “dplyr” which eases the manipulation of data. Under “data manipulation” we understand any action that subsets and filters 
data, adds more data to existing data structures or summarises data.

We will learn how to install the package and how its basic grammar works. After that we will explore six of the most fundamental functions provided 
by the package:

● filter( ) reduces the datasets to rows fulfilling specific conditions
● select( ) reduces the dataset to columns fulfilling specific conditions
● mutate( ) introduces new columns to a dataset
● summarise( ) creates a dataset providing statistical summaries
● group_by( ) organizes the data into categories
● arrange( ) reorganizes how data is sorted

Introduction
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Introduction

install.package("dplyr")

First, we need to install the dplyr package. This needs to be done only once.

Next, we add the package to the library. This must be done each session.

 

dplyr is also part of the package “tidyverse”, which includes “ggplot2” as well. Installing the tidyverse package therefore installs both 
packages we discuss in this course automatically.

A comprehensive documentation of dplyr can be found here: https://cran.r-project.org/web/packages/dplyr/dplyr.pdf

Furthermore, the “cheat sheet” provides an excellent overview about the most important functions included within this package: 
https://github.com/rstudio/cheatsheets/blob/master/data-transformation.pdf

library("dplyr")
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Installation guide and online resources

https://cran.r-project.org/web/packages/dplyr/dplyr.pdf
https://github.com/rstudio/cheatsheets/blob/master/data-transformation.pdf


Introduction

dplyr adds a new type of “grammar” to R that is used to combine several 
individual function calls into one call. The “pipe” %>% links functions 
together and automatically passes the input data to the next step.

The code on the right shows the same call of three functions; the first 
example uses “Vanilla R” without packages while the second one uses 
dplyr.

In the first example, function1( ) uses “data” to create a “result” dataset 
which is then uses as input for the next two steps. Each time, “result” has 
to be saved and loaded. With big datasets this could slow down the 
computation.

The second example uses the pipe %>% to link all three functions together. 
Note that the “result” only has to be saved once. This reduces computation 
time and also cleans up the code a little.
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A new “grammar”

# applying three functions to the same dataset
result <- function1(data, arguments)
result <- function2(result, arguments)
result <- function3(result, arguments)

# with dplyr functions can be linked via the pipe: %>%
result <- function1(data, arguments) %>% 
     function2(arguments)          %>%  
     function3(arguments)



Introduction

The following example shows the potential of simplifying code 
with dplyr. The task at hand is to summarise the cars in the mtcars 
dataset so we can easily see the average horsepower for each 
category of cylinder numbers.

In the first example we have to create two empty variables “cyl” 
and “meanHP” that will later be filled. We loop through each 
unique number of cylinders “i” and add the average horsepower 
per category “i” to “meanHP”. We also add each “i” to “cyl”. After 
the loop we combine both vectors into a dataframe and sort them 
by number of cylinders. This approach is almost as 
incomprehensible without proper annotations as the code itself.

The second example is simpler: We pass “mtcars” to group it by 
the “cyl” column and calculate the “meanHP” for each group.
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A new “grammar”

# using basic functions
cyl <- NULL
meanHP <- NULL
for(i in unique(mtcars$cyl)){
    meanHP <- append(meanHP, mean(mtcars$hp[which(mtcars$cyl==i)]))
    cyl <- append(cyl, i)
}
cbind(cyl,meanHP)[order(cyl),]

# using dplyr
mtcars %>%
    group_by(cyl) %>%
    summarise(meanHP = mean(hp)) # result: 

      cyl    meanHP
[1,]   4  82.63636
[2,]   6 122.28571
[3,]   8 209.21429



dplyr functions

The filter( ) function allows us to reduce the data to rows that fulfill specific conditions.

In the first example we only apply the nrow( ) function to the dataset “mtcars”, which is 
available in RStudio. This shows us that a) the original dataset has 32 observations (rows) 
and b) that dplyr and Vanilla functions can be combined by the pipe.

The second and third examples reduce the dataset to only those cars with 8 cylinders. 
While both examples return the same result, the first one created with filter( ) looks more 
compact and easier to understand. A selection with “data[which(data$column),]” uses a 
lot of different brackets as well as a comma, which quickly leads to typos while 
programming.

The fourth and fifth examples use inequalities. We can use “<”, “<=”, “==”, “>=” and “>” to 
pick certain intervals. The logical AND (“&”) means that two adjacent conditions must be 
fulfilled, while the logical OR (vertical stoke: “|”) only needs at least one condition fulfilled. 
The last example also shows how results can be stored in variables.
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filter( )
mtcars %>%
    nrow() # no filter, 32 observations

mtcars %>%
    filter(cyl==8) %>%
    nrow() # 14 observations

# this is equivalent to:
nrow(mtcars[which(mtcars$cyl==8),])

mtcars %>%
    filter(cyl<8) %>%
    nrow() # 18 observations

# store result in new variable (14 observations)
new_data <- mtcars %>%
    filter(cyl==4 & mpg > 20) 



dplyr functions

The select( ) function allows us to reduce the data to columns that fulfill specific 
conditions. We can also rename columns at the same time.

In the first example we reduce the mtcars dataset to only the column “cyl”. The result 
remains a dataframe even though it has only one column. The call “mtcars$cyl”, however, 
would only return a vector of the column’s values. Selecting “-cyl” will exclude this column 
from the dataset but keeps the rest.

Several columns can be selected at once by adding more column names to the select( ) 
function call. This does not require a c( ) to wrap them together as in most Vanilla 
functions. When several adjacent columns should be selected, the call can be specified as 
a range “columnX:columnY”. Both approaches are combinable, as in the fifth example.

Example six shows how selected columns can be renamed. In the last example, the 
function “everything( )” adds all non-selected columns to the back of the dataset. This can 
be a handy way to put selected columns to the front of the dataset.
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select( )
mtcars %>%  select(cyl) # select only column “cyl”

mtcars %>% select(-cyl) # s. all BUT column “cyl”

# select only columns “cyl” and “gear” in that order
mtcars %>% select(cyl, gear) 

# select all columns from “mpg” to “wt”
mtcars %>% select(mpg:wt)

# select all columns from “mpg” to “wt”, then “carb”
mtcars %>% select(mpg:wt, carb)

# select and rename columns “cyl” and “wt”
mtcars %>% select(cylinders = cyl, weight=wt)

# select “wt”, then the remaining columns
mtcars %>% select(weight=wt, everything())



dplyr functions

The mutate( ) function allows us to add new columns to the dataset.

In the first example we add the column ”wtMT” which converts the “wt” column’s values in 
“1,000 lbs” to metric tonnes (rounded to three decimal digits).

The second example uses inequalities and calculations based on other columns. At first 
the code calculates the mean value of the “wt” column and then compares the “wt” to its 
average. This returns a logical where “TRUE” indicates that the car is heavier than the 
average and “FALSE” if not.

In the third example we multiply two existing columns together. This makes little sense in 
this scenario, but is often required for physical measurements (e.g. weight divided by 
volume)

The last examples show the combination of several mutate( ) functions. The functions can 
be piped together or integrated into the same mutate( ) function.
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mutate( )
# mutate once
mtcars %>%
    mutate(wtMT = round(wt*0.453,3))

mtcars %>%
    mutate(wtAboveAVG = wt > mean(wt))

mtcars %>%
    mutate(gearCarb = gear * carb)

# mutate several times
mtcars %>%
    mutate(wtMT = round(wt*0.453,3)) %>%
    mutate(wtAboveAVG = wt > mean(wt))

mtcars %>%
    mutate(wtMT = round(wt*0.453,3),
           wtAboveAVG = wt > mean(wt))



dplyr functions

The summarise( ) function creates a new dataset with statistics about the original 
dataset. This can be combined with the group_by( ) function that subsets the dataset into 
groups.

The first example creates a summary of mtcars where the arithmetic average (mean), the 
central value (median) and the standard deviation of horsepower is displayed. The 
function can also be called by its American spelling: summarize( ).

Summaries can be combined with the group_by( ) function to receive more details about 
the result. In this case, we grouped the cars by “cyl”, i.e. all cars with 4, 6 or 8 cylinders will  
be sorted into their own respective group. summarise( ) will then give a summary of each 
group individually. The function n( ) counts how many observations are present in each 
group.

The group_by( ) function can also group the dataset by several columns and conditions, 
e.g. cars with more than 6 cylinders and fewer.
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summarise( ) & group_by( )
mtcars %>%
    summarise(hpMean = mean(hp), 
              hpMedian = median(hp), 
              hpSD = sd(hp))
     hpMean      hpMedian     hpSD
1 146.6875      123              68.56287

mtcars %>%
    group_by(cyl) %>%
    summarise(count = n(),
              hpMean = mean(hp), 
              hpMedian = median(hp), 
              hpSD = sd(hp))
    
     cyl  count   hpMean hpMedian  hpSD
1     4      11             82.6         91           20.9
2     6        7           122.         110           24.3
3     8      14           209.         192.          51.0



dplyr functions

The arrange( ) function allows us to change the order in which observations are sorted.

The first example reorganizes the dataset to show the cars with the fewest cylinders first 
(ascending order). As “cyl” can be regarded as a categorical value is this case (there are 
only three categories), there will be “ties”. In these cases, the observation coming earlier in 
the dataset will be given the priority.

The second example solves this issue by introducing a second sorting condition. If two 
cars have the same “cyl” value, their “hp” value will decide which one is given priority. The 
function can take each column into consideration, but that might decrease the 
performance if the dataset is big.

In the third example, we use “desc( )” to sort the cars by “wt” in descending order, i.e. the 
heaviest cars will appear first. The fourth example combines ascending order (by default) 
and descending order (by specification).
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arrange( )
# sort by cylinders, ascending order
mtcars %>%
    arrange(cyl)

# sort by cylinders, then by hp, ascending order
mtcars %>%
    arrange(cyl, hp)

# sort by cylinders, descending order
mtcars %>%
    arrange(desc(wt))

# sort by cylinders, descending order, then by hp
mtcars %>%
    arrange(desc(wt), hp)



dplyr functions

Now we want to apply what we learned to do some statistics on a few csv files.

This course provides eight csv files containing information about the eight generations of 
Pokémon*. Our goal is to find out which is the strongest Pokémon in each generation.

To load the csv files we have set a path, or our working directory, to the location of the 
files. This is done here with “setwd(“...”)”. The path must use “/” instead of “\” to be valid in 
R. Make sure your directory only contains the eight specified files and nothing else.

We create an empty dataframe “pkmn” and a counter variable “gen” for the generations. 
The function “dir( )” lists all files in the working directory. Please make sure it does not 
contain other data. Looping through all elements “i” (each i represents a file name), we 
store each file’s content into a temporary variable “temp”. With “mutate( )” we add a 
column for the generation’s number. The “temp” variable is connected row-wise with 
“rbind( )”, and the “gen” variable is increased, so the next loop starts with “gen=2”. In the 
end, the dataframe “pkmn” should include 1,017 observations.
*Data collected from: https://bulbapedia.bulbagarden.net/wiki/List_of_Pok%C3%A9mon_by_base_stats_(Generation_VIII-present)
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Bring it together! (1/2)
# set wd to location of csv files
setwd("...")

pkmn <- data.frame() # empty df
gen <- 1 # generation counter, starting with 1

# loop through all files in wd
for(i in dir()){
# read csv files, one at a time
    temp <- read.csv(i, sep=",", header=TRUE) %>% 
        # add generation column
        mutate(generation = gen)
    # add generation to “pkmn” df
    pkmn <- rbind(pkmn, temp)
    # increase “gen” for next iteration
    gen = gen + 1
}



dplyr functions

Once “pkmn” is ready, we use dplyr functions to find the strongest Pokémon from each 
generation. The strength will be measured as total sum of all six attributes.

Firstly, we create a “total” column that sums up all attribute values per Pokémon. We 
group by “generation”. To only get the highest value per generation, we filter out the 
observation that coincides with the max( ) value of its group. Finally, we arrange the 
remaining observations in descending order and select only relevant columns.

The result should look like this. “Eternamax Eternatus” has the highest total value of all 
Pokémons. There are a few ties because some Pokémons’ values add up to the same 
totals.
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Bring it together! (2/2)
pkmn %>% 
# add column “total”
mutate(total = hp + attack + defense + spAttack + 
spDefense + speed)  %>%

# group by generation   
group_by(generation) %>%

# filter the observation with max value per group
filter(total == max(total)) %>%

# arrange observations in descending order
arrange(desc(total)) %>%
    
# select relevant columns
select(number, pokemon, generation, total)

   number pokemon                 generation total
 1 890E   Eternamax Eternatus    8  1125
 2 150MX  Mega Mewtwo X           1   780
 3 150MY  Mega Mewtwo Y            1   780
 4 384M   Mega Rayquaza             3   780
 5 800U   Ultra Necrozma              7   754
 6 493    Arceus                           4   720
 7 718C   Zygarde (Complete)      6   708
 8 248M   Mega Tyranitar               2   700
 9 646B   Black Kyurem                 5   700
10 646W   White Kyurem                 5   700



2.3 Data manipulation with dplyr

In this chapter we learned how to install and use a package in R. The “dplyr” package provides us with functions that exceed functionality and 
efficiency of standard (“Vanilla”) functions.

The functions filter( ) and select( ) can be used to subset a dataset to specific rows or columns respectively. While filter( ) uses conditional 
statements, the latter function simply names columns that should be either included or excluded. Both functions are great to reduce a dataset to 
the most essential information. With mutate( ) we can add columns to a dataset. arrange( ) sorts observations by ascending or descending values 
of specified columns.

summarise( ) and group_by( ) are useful functions to calculate statistics of a dataset. By default, a statistic like the arithmetic mean or the standard 
deviation will take all observations into consideration to create one resulting value. If the dataset is grouped by a certain criterion (e.g. age groups, 
biological sex, profession), the statistics are more faceted. 

The dplyr package has many more functions. For the scope of this course, these six functions suffice to provide an introduction to the package’s 
usefulness. 

In the next lessons we will learn how to visualize data.
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What have we learned?


