

PRÉFET DE LA NIÈVRE

Préfecture de la Nièvre Secrétariat Général

Direction du pilotage interministériel et des moyens

Guichet unique ICPE Pôle enquêtes publiques

Tél. 03 86 60 71 46 Télécopie : 03 86 60 72 51

N° 2012-P- 969

ARRÊTÉ

portant prescriptions complémentaires aux dispositions de l'arrêté préfectoral n° 2007-P-1778 du 30 mars 2007 autorisant M. le Directeur de la SADE CGTH à poursuivre et étendre l'exploitation d'un centre de stockage de déchets non dangereux situé sur le territoire de la commune de LA FERMETÉ

Le PRÉFET DE LA NIÈVRE, Chevalier de la Légion d'Honneur, Chevalier de l'Ordre National du Mérite

- VU la directive 2008/105/EC du 16 décembre 2008 établissant des normes de qualité environnementale dans le domaine de l'eau,
- VU la directive 2006/11/CE concernant la pollution causée par certaines substances dangereuses déversées dans le milieu aquatique de la Communauté,
- VU la directive 2000/60/CE du 23 octobre 2000 établissant un cadre pour une politique communautaire dans le domaine de l'eau (DCE),
- VU le code de l'environnement et notamment son titre 1^{er} des parties réglementaires et législatives du Livre V,
- VU la nomenclature des installations classées codifiée à l'annexe de l'article R.511-9 du code de l'environnement,
- VU les articles R.211-11-1 à R.211-11-3 du titre 1 du livre II du code de l'environnement relatifs au programme national d'action contre la pollution des milieux aquatiques par certaines substances dangereuses,
- VU l'arrêté ministériel du 2 février 1998 modifié relatif aux prélèvements et à la consommation d'eau ainsi qu'aux émissions de toute nature des installations classées pour la protection de l'environnement soumises à autorisation.
- VU l'arrêté ministériel du 20 avril 2005 modifié pris en application du décret du 20 avril 2005 relatif au programme national d'action contre la pollution des milieux aquatiques par certaines substances dangereuses,

- VU l'arrêté ministériel du 30 juin 2005 modifié relatif au programme national d'action contre la pollution des milieux aquatiques par certaines substances dangereuses,
- VU l'arrêté ministériel du 31 janvier 2008 relatif à la déclaration annuelle des émissions polluantes et des déchets,
- VU la circulaire DPPR/DE du 4 février 2002 qui organise une action nationale de recherche et de réduction des rejets de substances dangereuses dans l'eau par les installations classées,
- VU la circulaire DCE 2005/12 du 28 juillet 2005 relative à la définition du « bon état »,
- VU la circulaire DE/DPPR du 7 mai 2007 définissant les « normes de qualité environnementale provisoires (NQEp) » et les objectifs nationaux de réduction des émissions de certaines substances.
- VU la circulaire du 5 janvier 2009 relative à la mise en œuvre de la deuxième phase de l'action nationale de recherche et de réduction des substances dangereuses pour le milieu aquatique présentes dans les rejets des installations classées pour la protection de l'environnement.
- VU la note du 23 mars 2010 nortant adaptation des conditions de mise en œuvre de la circulaire du 5 janvier 2009 relative aux actions de recherche et de réduction des substances dangereuses dans les rejets aqueux des installations classées pour la protection de l'environnement.
- VU la note du 27 avril 2011 portant adaptation des conditions de mise en œuvre de la circulaire du 5 janvier 2009 relative aux actions de recherche et de réduction des substances dangereuses dans les rejets aqueux des installations classées pour la protection de l'environnement.
- VU le rapport d'étude de l'INERIS N°DRC-07-82615-13836C du 15/01/08 faisant état de la synthèse des mesures de substances dangereuses dans l'eau, réalisées dans certains secteurs industriels,
- VU l'arrêté préfectoral n° 2007-P-1778 du 30 mars 2007 autorisant M. le Directeur de la SADE CGTH à poursuivre et étendre l'exploitation d'un centre de stockage de déchets non dangereux situé sur le territoire de la commune de LA FERMETÉ,
- VU le rapport de l'inspection des installations classées en date du 27 janvier 2012,
- VU l'avis du CODERST du 7 février 2012,
- VU le projet d'arrêté porté à la connaissance du demandeur le 6 avril 2012,
- CONSIDÉRANT l'objectif de respect des normes de qualité environnementale dans le milieu en 2015, fixé par la directive 2000/60/CE,
- CONSIDÉRANT les objectifs de réduction et de suppression de certaines substances dangereuses fixées dans la circulaire DE/DPPR du 7 mai 2007,
- CONSIDÉRANT la nécessité d'évaluer qualitativement et quantitativement par une surveillance périodique les rejets de substances dangereuses dans l'eau issus du fonctionnement de l'établissement au titre des installations classées pour la protection de l'environnement afin de proposer, le cas échéant, des mesures de réduction ou de suppression adaptées,

CONSIDÉRANT les effets toxiques, persistants et bioaccumulables des substances dangereuses visées par le présent arrêté sur le milieu aquatique,

SUR proposition du secrétaire général de la préfecture de la Nièvre.

ARRÊTE

ARTICLE 1. OBJET

La société SADE, Compagnie Générale de Travaux Hydraulique, dont le siège social est situé 28 Rue de la Baume 75008 PARIS, est soumise, pour ses installations situées au lieu dit « Linière » sur le territoire de la commune de LA FERMETÉ, aux dispositions du présent arrêté complémentaire qui vise à fixer les modalités de surveillance provisoire des rejets de substances dangereuses dans l'eau afin d'améliorer la connaissance qualitative et quantitative des rejets de ces substances

Les prescriptions des actes administratifs antérieurs sont complétées par celles du présent arrêté.

ARTICLE 2. PRESCRIPTIONS TECHNIQUES APPLICABLES AUX OPÉRATIONS DE PRÉLÈVEMENTS ET D'ANALYSES

- 2.1 Les prélèvements et analyses réalisés en application du présent arrêté doivent respecter les dispositions de l'annexe 2 du présent arrêté préfectoral complémentaire.
- 2.2 Pour l'analyse des substances, l'exploitant doit faire appel à un laboratoire d'analyse accrédité selon la norme NF EN ISO/CEI 17025 pour la matrice « Eaux Résiduaires», pour chaque substance à analyser.
- 2.3 L'exploitant doit être en possession de l'ensemble des pièces suivantes fournies par le laboratoire qu'il aura choisi, avant le début des opérations de prélèvement et de mesures afin de s'assurer que ce prestataire remplit bien les dispositions de l'annexe 2 du présent arrêté préfectoral complémentaire :
 - Justificatifs d'accréditations sur les opérations de prélèvements (si disponible) et d'analyse de substances dans la matrice « eaux résiduaires » comprenant a minima ;
 - a. Numéro d'accréditation
 - b. Extrait de l'annexe technique sur les substances concernées :
 - Liste de références en matière d'opérations de prélèvements de substances dangereuses dans les rejets industriels;
 - Tableau des performances et d'assurance qualité précisant les limites de quantification pour l'analyse des substances qui doivent être inférieures ou égales à celles de l'annexe 5.2 de l'annexe 2 du présent arrêté préfectoral complémentaire.;
 - Attestation du prestataire s'engageant à respecter les prescriptions figurant à l'annexe 2 du présent arrêté préfectoral complémentaire.

Les modèles des documents mentionnés aux points 3 et 4 précédents sont repris en annexe 1 du présent arrêté.

2.4 - Dans le cas où l'exploitant souhaite réaliser lui-même le prélèvement des échantillons, celuici doit fournir à l'inspection, avant le début des opérations de prélèvement et de mesures prévues à l'article 3 du présent arrêté, les procédures qu'il aura établies démontrant la fiabilité et la reproductibilité de ses pratiques de prélèvement. Ces procédures doivent intégrer les points détaillés aux paragraphes 3.2 à 3.6 du document figurant en annexe 2 du présent arrêté préfectoral et préciser les modalités de traçabilité de ces opérations.

ARTICLE 3. MISE EN ŒUVRE DE LA SURVEILLANCE INITIALE

L'exploitant met en œuvre, sous trois mois à compter de la notification du présent arrêté, le programme de surveillance des effluents de son établissement, dans les conditions suivantes :

Lieux de prélèvement	Périodicité	Substances	Limite de quantification à atteindre par substance par les laboratoires en µg/l (source : annexe 5.2 du document en annexe 2)
	1 prélèvement par mois	Nonylphénols	0,1
	pendant 6 mois, dans	Naphtalène	0,05
Bassins de	chaque bassin de récupération des lixiviats,	Nickel et ses composés	10
récupération	d'échantillons	Octylphénols	0,1
des lixiviats	représentatifs des effluents stockés avant	Arsenic	5
	évacuation en centre de	Chrome	5
	traitement	Zinc	10

Lieux de prélèvement	Périodicité	Substances	Limite de quantification à atteindre par substance par les laboratoires en µg/l (source : annexe 5.2 du document en annexe 2)
	1 prélèvement par mois	Benzène	1
	pendant 3 mois, dans	Cuivre et ses composés	5
	chaque bassin de	Diuron	0,05
	récupération des lixiviats,	Isoproturon	0,05
	d'échantillons	Pentachlorophénol	0,1
	représentatifs des effluents	Plomb et ses composés	5
	stockés avant évacuation	Toluène	1
Bassins de	en centre de traitement	Tributylphosphate	0,1
récupération des lixiviats	puis	Hexachlorocyclohexane (alpha isomère)	0,02
		Mercure et ses composés	0,5
	si la substance est détectée au moins une fois, 1 prélèvement par	Tributylétain cation	0,02
		Dibutylétain cation	0,02
		Monobutylétain cation	0.02
	mois pendant trois mois supplémentaires	Trichloroéthylène	0,5

ARTICLE 4. RAPPORT DE SYNTHÈSE DE LA SURVEILLANCE INITIALE

L'exploitant doit fournir; dans un délai maximal de douze mois à compter de la notification du présent arrêté préfectoral, un rapport de synthèse de la surveillance initiale devant comprendre :

 un tableau récapitulatif des mesures sous une forme synthétique. Ce tableau comprend, pour chaque substance, sa concentration et son flux, pour chacune des mesures réalisées. Le tableau comprend également la concentration minimale, maximale et moyenne mesurée sur les six échantillons, ainsi que le flux minimal, maximal et moyen calculé à partir des six mesures et les limites de quantification ;

- l'ensemble des rapports d'analyses réalisées en application du présent arrêté;
- dans le cas où l'exploitant a réalisé lui-même le prélèvement des échantillons, l'ensemble des éléments permettant d'attester de la traçabilité de ces opérations de prélèvement;
- des commentaires et explications sur les résultats obtenus et leurs éventuelles variations, en évaluant les origines possibles des substances identifiées, notamment au regard des activités du site, des produits utilisés dans le cadre de ces activités et de la nature des déchets enfouis dans chaque casier raccordé aux Bassins de récupération des lixiviats ;
- des propositions dûment argumentées, le cas échéant, si l'exploitant souhaite l'abandon de la surveillance pour certaines substances. Il pourra être demandé la suppression de la surveillance si des substances présentes dans les eaux répondent à toutes les conditions suivantes :
 - la mesure n'est pas une mesure qualifiée d'« incorrecte-rédhibitoire » par l'INERIS.
 - le flux journalier moyen émis de la substance est inférieur à la valeur figurant dans la colonne A du tableau de l'annexe 2 de la note du 27 avril 2011.

Pour ceux qui rejettent dans le milieu naturel uniquement :

- toutes les concentrations mesurées pour la substance sont inférieures à 10*NQE (Norme de Qualité Environnementale),
- tous les flux journaliers moyens sont inférieurs à 10 % du flux admissible par le milieu; le flux admissible étant considéré comme le produit du QMNA5 de la masse d'eau (débit mensuel d'étiage de fréquence quinquennale) et de la NQE,
- la substance n'est pas un paramètre déclassant la masse d'eau où a lieu le rejet ;
- des propositions dûment argumentées, le cas échéant, si l'exploitant souhaite adopter un rythme de mesures autre que trimestriel pour la poursuite de la surveillance;
- le cas échéant, les résultats de mesures de qualité des eaux d'alimentation en précisant leur origine (superficielle, souterraine ou adduction d'eau potable).

ARTICLE 5. REMONTÉE D'INFORMATIONS SUR L'ÉTAT D'AVANCEMENT DE LA SURVEILLANCE DES REJETS - DÉCLARATION DES DONNÉES RELATIVES À LA SURVEILLANCE DES REJETS AQUEUX

L'exploitant est tenu :

- de transmettre mensuellement par écrit avant la fin du mois N+1 à l'inspection des installations classées un rapport de synthèse relatif aux résultats des mesures et analyses du mois N imposées à l'article 3, ainsi que les éléments relatifs au contexte de la mesure analytique des substances figurant en annexe 2 du présent arrêté,
- de transmettre mensuellement à l'INERIS, par le biais du site http://rsde.ineris.fr, les éléments relatifs au contexte de la mesure analytique des substances figurant en annexe 2 du présent arrêté.

ARTICLE 6. SANCTIONS

Les infractions ou l'inobservation des conditions légales fixées par le présent arrêté entraîneront l'application des sanctions pénales et administratives prévues par le titre 1^{er} du livre V du code de l'environnement.

ARTICLE 7. DÉLAI ET VOIE DE RECOURS

Le destinataire du présent arrêté peut saisir le tribunal administratif, sis 22, rue d'Assas à Dijon, d'un recours contentieux dans le délai de deux mois à compter de la notification du présent arrêté.

À l'intérieur de ce délai, il peut également saisir le préfet d'un recours gracieux, ou le ministre de l'écologie et du développement durable d'un recours hiérarchique qui n'interrompt en aucune façon le délai de recours contentieux (l'absence de réponse de l'administration au terme d'un délai de deux mois vaut décision implicite de rejet)

ARTICLE 8. EXÉCUTION - NOTIFICATION

Une ampliation du présent arrêté sera notifiée par la voie administrative au directeur de la société SADE CGTH, chargé d'en afficher, en permanence et de façon visible, un extrait dans son établissement.

Une copie sera adressée à :

- M. le secrétaire général de la préfecture de la Nièvre,
- M. le maire de LA FERMETÉ.
- Mme la directrice régionale de l'environnement de l'aménagement et du logement de la région Bourgogne,
- M. le colonel, commandant le groupement de gendarmerie de la Nièvre.
- M. le délégué territorial de la Nièvre de l'agence régionale de la santé de Bourgogne,
- Mme le directeur départemental de la cohésion sociale et de la protection des populations,
- M. le directeur départemental des territoires,
- M. le directeur de l'unité territoriale de la Nièvre de la direction régionale des entreprises, de la concurrence, de la consommation, du travail et de l'emploi de Bourgogne,
- M. le directeur départemental des services d'incendie et de secours de la Nièvre,
- M. le chef du service interministériel de défense et de protection civile,
- M. le président du conseil général de la Nièvre.
- M. le directeur de l'agence de l'eau Loire Bretagne.
- M. le chef de la subdivision de Nevers, de la direction régionale de l'environnement, de l'aménagement et du logement de la région Bourgogne,

chargés, chacun en ce qui le concerne, d'en assurer l'application et l'exécution.

Fait à Nevers, le 9 6 413 5012

Michel PAILLISSE

Préfet

Le Prefet

ANNEXE 1 - Tableau des performances et assurance qualité et attestation du prestataire à renseigner par le laboratoire et à restituer à l'exploitant

(Documents disponibles à l'annexe 5.5 de la circulaire du 5 janvier 2009 et téléchargeables sur le site http://rsde.ineris.fr/)

Anilines 2 chlor 3 chlor 4 chlor 4-c nitro 3,4 dich Chloroa Bip Epichl Tributyl A chloro Tétrabro BDE BE BE Pentabro ylé (BD Pentabro é BD Hexabro é BD Hexabro lé BD Décabro lé (BD Décabro le (BD DÉcab	stances	Code SANDRE	Substance Accréditée¹ oui / non sur matrice eaux résiduaires	LQ en μg/l (obtenue sur une matrice ear résiduaire)
Anilines 2 chlor 3 chlor 4 chlor 4 chlor 5 chloros 6 chl	/lphénols	1957		
Anilines 2 chlorod 3 chlorod 4 chlorod 4 chlorod 3,4 dich Chlorod 5,4 dich Chlorod 6 BD Pentabroyle (BD Pentabroyle (BD Hexabroole BD Hexabroole BD Hexabroole BD Décabroole (BD Décabrool	P10E	demande en cours		
Anilines 2 chlor 3 chlor 4 chlor 4-c nitro 3,4 dich Chloroa Bip Epichl Tributyl A chloro BDE Ié BDE Ié BDE Pentabro ylé (BD Hexabro é BD Hexabro lé BD Heptabro ylé (BD Décabro lé (BD Décabro le (BD Déc	P2OE	demande en cours		
Anilines 2 chlor 3 chlor 4 chlor 4-chlor 3,4 dich Chloroa Bip Epichl Tributyl A chloro Tétrabro BDE	lphénols	1920		
Anilines 2 chlor 3 chlor 4 chlor 4-chlor 3,4 dich Chloroa Autres Bip Epichl Tributyl A chloro Tétrabro BBE BE BE BE Pentabro ylé (BD Pentabro é BD Hexabro é BD Hexabro lé BD Décabro lé (BD Décabro le (P10E	demande en cours		
Anilines 2 chlorod 3 chlorod 4 chlorod 4 chlorod 3,4 dich Chlorod Chlorod Tetrabro BDE BE BE Pentabro yle (BD Hexabro è BD Hexabro lé BD Décabro lé (BD Décabro le (BD DÉca	P2OE	demande en cours		
3 chlo 4 chlo 4-c nitro 3,4 dich Chloroa Bip Epichl Tributyl A chloro Tétrabro BDE Ié BE Pentabr ylé (BE Pentabr ylé (BD Hexabro é BD Hexabro é BD Heptabr ylé BD Heptabr ylé BD Heptabr	roaniline	1593		
4 chlor 4-c nitro 3,4 dich Chloroa Bip Epichl Tributyl A chloro Tétrabro BDE	roaniline	1592		
Autres Autres Autres Bip Epichl Tributyl A chloro Tétrabro BE Pentabr yle (BE Pentabr yle (BD Hexabro é BD Hexabro ig BD Heptabr yle (BD	roaniline	1591		
nitro 3,4 dich Chloroa Bip Epichl Tributyl A chloro Tétrabro BDE BI Pentabr ylé (BI Pentabr ylé (BI Hexabro é BD Hexabro ié BD Heptabr ylé (BD Décabro lé (BD	hloro-2	1594		
3,4 dich Chloroa Bip Epichl Tributyl A chloro Tétrabro BDE lé BD Pentabr ylé (BD Pentabro é BD Hexabro é BD Heptabro ylé (BD Hexabro lé BD Hexabro lé BD Hexabro lé BD	paniline	1594		
Autres Bip Epichl Tributyl A chloro Tétrabro BDE BC Pentabr ylé (BD Pentabr ylé (BD Hexabro é BD Hexabro ylé BD Hexabro lé BD Heptabr ylé (BD		1586		
Bip Epichl Tributyl A chloro Tétrabro BDE BE Pentabr ylé (BD Pentabro ylé (BD Hexabro é BD Hexabro jlé BD Hexabro jlé BD Hexabro jlé BD Heptabr		1300		
Epichil Tributyl A chloro Tétrabro BDE lé BE Pentabr ylé (BE Pentabr ylé (BD Hexabro é BD Hexabro je BD Heptabr ylé BD Heptabr	C ₁₃	1955		
Tributyl A chloro Tétrabro BDE BC Pentabr ylé (BD Pentabr ylé (BD Hexabro é BD Hexabro hexabro jlé BD Heptabr ylé (BD BD Heptabr	hényle	1584		
chlord Tétrabro BDE lé BE Pentabro ylé (BD Pentabro ylé (BD Hexabro é BD Hexabro jlé BD Hexabro jlé BD Heckabro jlé BD Heptabro jlé BD Décabro lé (BD	orhydrine	1494		
chlord Tétrabro BDE lé BE Pentabro ylé (BE Pentabro ylé (BD Hexabro é BD Hexabro ylé BD Hexabro lé BD Heptabro ylé BD Heptabro ylé BD	phosphate	1847		
BDE Ié BE Pentabro ylé (BE Pentabro ylé (BD Hexabro é BD Hexabro be BD Heptabro ylé (BD Hexabro lé BD	cide	1465		
BDE Ié BD Pentabr ylé (BD Pentabr ylé (BD Hexabro é BD Hexabro hexabro jlé BD Décabro lé (BD	acétique	1400		
yle (BD Pentabr yle (BD Hexabro é BD Hexabro é BD Heptabro yle BD Décabro lé (BD	modiphény ther DE 47	2919		
yle (BD Hexabro é BD Hexabro é BD Hexabro je BD Heptabr yle BD Décabro lé (BD	omodiphén éther DE 99)	2916		
é BD Hexabro é BD Heptabr ylé BD Décabro lé (BD	omodiphén éther E 100)	2915		
é BD Heptabr ylé BD Décabro lé (BD	modiphényi ther E 154	2911		
yle BD Décabro lé (BD	modiphényl ther E 153	2912		
lé (BD	omodiphén éther E 183	2910		
	modiphény ther E 209)	1815		
	nzène	1114		
Ethyll	penzène	1497		
	ylbenzène	1633		
	luène	1278		
Xylènes	s (Somme m,p)	1780		

			* 0
	Pentachlorobenzèn	1888	
	e	11.33.3.4.67	
	1,2,3 trichlorobenzène	1630	
	1,2,4 trichlorobenzène	1283	
	1,3,5 trichlorobenzène	1629	
	Chlorobenzène	1467	
	1,2 dichlorobenzène	1165	
	1,3	1164	
	dichlorobenzène 1,4	1166	
	dichlorobenzène	115 (38925)	
	1,2,4,5 tétrachlorobenzène	1631	
	1-chloro-2-	1469	
	nitrobenzène 1-chloro-3-	1468	
	nitrobenzène 1-chloro-4-	4.470	
	nitrobenzène	1470	
Chlorophénols		1235	
	4-chloro-3- méthylphénol	1636	
	2 chlorophénol	1471	
	3 chlorophénol	1651	
	4 chlorophénol	1650	
	2,4 dichlorophénol	1486	
	2,4,5	- V-0.19-72-	
	trichlorophénol	1548	
	2,4,6 trichlorophénol	1549	
COHV	Hexachloropentadi ène	2612	
	1,2 dichloroéthane	1161	
	Chlorure de méthylène	1168	
	Hexachlorobutadiè	1652	
	ne Chloroforme	1135	
	Tétrachlorure de	1276	
	Chloropròno		
	Chloroprène	2611	
	3-chloroprène (chlorure d'allyle)	2065	
	1,1 dichloroéthane	1160	
	1,1 dichloroéthylène	1162	
	1,2 dichloroéthylène	1163	
	Hexachloroéthane	1656	
	1,1,2,2 tétrachloroéthane	1271	
		1272	
	Tétrachloroéthylène	1272	
	1,1,1	1284	

	trichloroéthane		
	1,1,2	1285	
	trichloroéthane		
	Trichloroéthylène	1286	
	Chlorure de vinyle	1753	
HAP	Anthracène	1458	
1 17 31	Fluoranthène	1191	
	Naphtalène	1517	
	Acénaphtène	1453	
	Benzo (a) Pyrène	1115	
	Benzo (k)	1117	
	Fluoranthène	4.4.4.	
	Benzo (b)	1116	
	Fluoranthène	1110	
	Benzo (g,h,i)	****	
	Pérylène	1118	
	Indeno (1,2,3-cd)		
	Pyrène	1204	
53332	Cadmium et ses		
Métaux		1388	
	composés	A 100 11 11 11 11 11 11 11 11 11 11 11 11	
	Plomb et ses	1382	
	composés	1002	
	Mercure et ses	1387	
	composés	1307	
	Nickel et ses	1200	
	composés	1386	
	Arsenic et ses	7	
	composés	1369	
	Zinc et ses		
	composés	1383	
	Cuivre et ses		
		1392	
	composés	27.00	
	Chrome et ses	1389	
_	composés	2000000	
Organoétains	Tributylétain cation	2879	
	Dibutylétain cation	1771	
	Monobutylétain	2542	
	cation	2542	
	Triphénylétain	demande en cours	
	cation		
PCB	PCB 28	1239	
1 00	PCB 52	1241	
	PCB 101	1242	
	PCB 118	1243	
	PCB 138	1244	
	PCB 153	1245	
	PCB 180	1246	
Pesticides	Trifluraline	1289	
	Alachlore	1101	
	Atrazine	1107	
	Chlorfenvinphos	1464	
	Chlorpyrifos	1083	
	Diuron	1177	
	Apha Endosulfan	1178	
	béta Endosulfan	1179	
	alpha Hexachlorocyclohe	1200	

	xane		
	gamma isomère Lindane	1203	
	Isoproturon	1208	
	Simazine	1263	
	Demande Chimique		
Paramètres de	en Oxygène ou	1314	
suivi	Carbone Organique Total	1841	
	Matières en Suspension	1305	

^{1 :} Une absence d'accréditation pourra être acceptée pour certaines substances (substances très rarement accréditées par les laboratoires voire jamais). Il s'agit des substances : « Chloroalcanes C10-C13, diphénylétherbromés, alkylphénols et hexachloropentadiene».

ATTESTATION DU PRESTATAIRE

	ussigné(e) (Nom, é)					
Coord différe	onnées de l'entreprise (Nomente	m, forme juridique du		al, RCS, siè siège)	ge social et a	adresse si

op l'a mi - m' pre	connais avoir reçu et avoir érations de prélèvements e ction nationale de recherch lieu aquatique et des docun engage à restituer les rési élèvement : connais les accepter et les a	et d'analyses pou ne et de réduction ments auxquels il f ultats dans un dé	r la mise en des rejets de fait référence. élai de XXX r	œuvre de l substance	a deuxième s dangereuse	phase de es pour le
Α:		Le:				
Pour l	e soumissionnaire, nom et	prénom de la pers	sonne habilité	e à signer le	e marché :	
Signat	ure:					
Cache	t de la société :					
Signa	ture et qualité du signatair on « Bon pour acceptation »	re (qui doit être h	nabilité à eng	ager sa so	ciété) précéd	dée de la

¹ L'attention est attirée sur l'intérêt de disposer des résultats d'analyses de la première mesure avant d'engager la suivante afin d'évaluer l'adéquation du plan de prélèvement, en particulier lors des premières mesures.

(Document disponible à l'annexe 5.4 de la circulaire du 5 janvier 2009 et téléchargeable sur le site http://rsde.ineris.fr/) ANNEXE 2 - Éléments relatifs au contexte de la mesure analytique des substances

Conditions de prélèvement et d'analyses

-	Vol. No.	
Properties of Marketin	damers pecimes ? chutte significant	
Date de prive en charge de Féchantillon par le taboratoire principal	dete (format J.M. M. T. A.)	
identification dy laboratoire principal d'analyse	code SANDRE de l'intervenant principal	
Bignic d'almosphère	OULARON	
Blanc de tystème de prélèvement	earl nea	
Durée de prélévement	durio an nombro d'haurea	
Pétiade de prélèventent_date début	date Hormat JAMM'AA)	
200 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Countries destroy.	
David Sement Connace	BARE POINTS!	
Type de prélèvement	Jute deroufante dassevri au debri, proportronnel au temps, ponctuel J	
Peterina De evenent prélèvement	champinese a sectore a receipt to a receipt to receive to receipt	
identitication de Lotganisme de prélèvement	code sandre du prestataire de prefevenent, code exploitant	
identification Fechanhillon	zone ilbre de lexte	

Résultats d'analyses

Kesul	Resultats d'analyses	alyses	10 -		13-											_			
Cost (ANDR) (hite detective det coder subare)	Costs tampati Lifete count da har de sanctin section da section de la familia de la fa	Pésutu total de Carolyse	Unité Résoutai	flox journales (g) ou m2)	Reference I is a circ. 16 a 16 a 10 a a conservation or conservation or conservation. 18 a 16 b 10 a a conservation or conse	Muser court octrefiction (200-17, 429) p. 80-19 filtre de octs/4 03-174(19)	Sole de début dombjee got le laboration $\sum_{i=1}^{n} 2^{i}$ $\sum_{i=1}^{n} (i)_{i,i}$ and	factor Acapite (Cole sarbe 3 Plaza Aceas 22 Es. Sale 47 AES GLASS	Novelet de la Bacifan consiyele	that ce to botton onto side	Renthals see lastyn c'étagaiement (k-2)	Personal Per		10 10 10 10 10 10 10 10 10 10 10 10 10 1	twant is twat de grankliction groundschlan stillen schle	tant the confliction orallicition for that or state or st	Code recorder Countrie de la faction Countrie de la faction Fortigate Countrie de la faction Coun	The State of the S	
	Deta		sardre										İ	ŀ		H	ŀ		
	000)/fu	66															
	169		l/tu	14												L	-		
	substance 1		sarde					0		186									
	substance 1		sarde					17		111									
	sentace 1944		100	- Edit	a renseigner uniquement sur la ligne substance total					181									
	systemetrics, Tokerell	luere)						R									-		H
	substance ex. BDE:	i.						=						ŀ		-			т

ANNEXE 3 - Prescriptions techniques applicables aux opérations de prélèvements et d'analyses

1 - INTRODUCTION

Cette annexe a pour but de préciser les prescriptions techniques qui doivent être respectées pour la réalisation des opérations de prélèvements et d'analyses de substances dangereuses dans l'eau.

Ce document doit être communiqué à l'exploitant comme cahier des charges à remplir par le laboratoire qu'il choisira. Ce document permet également à l'inspection de vérifier à réception du rapport de synthèse de mesures les bonnes conditions de réalisation de celles-ci.

2 - PRESCRIPTIONS GÉNÉRALES

Dans l'attente d'une prise en compte plus complète de la mesure des substances dangereuses dans les eaux résiduaires par l'arrêté ministériel du 29 novembre 2006, portant modalités d'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques au titre du code de l'environnement, le laboratoire d'analyse choisi devra impérativement remplir les deux conditions suivantes :

- être accrédité selon la norme NF EN ISO/CEI 17025 pour la matrice « Eaux Résiduaires», pour chaque substance à analyser. Afin de justifier de cette accréditation, le laboratoire devra fournir à l'exploitant l'ensemble des documents listés à l'annexe 5.5 avant le début des opérations de prélèvement et de mesures afin de justifier qu'il remplit bien les dispositions de la présente annexe. Les documents de l'annexe 5.5 sont téléchargeables sur le site http://rsde.ineris.fr,
- respecter les limites de quantification listées à l'annexe 5.2 pour chacune des substances.

Le prestataire ou l'exploitant pourra faire appel à de la sous-traitance ou réaliser lui-même les opérations de prélèvements. Dans tous les cas, il devra veiller au respect des prescriptions relatives aux opérations de prélèvements telles que décrites ci-après, en concertation étroite avec le laboratoire réalisant les analyses.

La sous-traitance analytique est autorisée. Toutefois, en cas de sous-traitance, le laboratoire désigné pour ces analyses devra respecter les mêmes critères de compétences que le prestataire c'est à dire remplir les deux conditions visées au paragraphe 2 ci-dessus.

Le prestataire restera, en tout état de cause, le seul responsable de l'exécution des prestations et s'engagera à faire respecter par ses sous-traitants toutes les obligations de l'annexe technique.

Lorsque les opérations de prélèvement sont diligentées par le prestataire d'analyse, il est seul responsable de la bonne exécution de l'ensemble de la chaîne.

Lorsque les opérations de prélèvements sont réalisées par l'exploitant lui-même ou son sous-traitant, l'exploitant est le seul responsable de l'exécution des prestations de prélèvements et, de ce fait, responsable solidaire de la qualité des résultats d'analyse.

Le respect du présent cahier des charges et des exigences demandées pourront être contrôlés par un organisme mandaté par les services de l'État.

L'ensemble des données brutes devra être conservé par le laboratoire pendant au moins 3 ans.

3 - OPÉRATIONS DE PRÉLÈVEMENT

Les opérations de prélèvement et d'échantillonnage devront s'appuyer sur les normes ou les guides en vigueur, ce qui implique à ce jour le respect de :

- la norme NF EN ISO 5667-3 « Qualité de l'eau -Echantillonnage Partie 3 : Lignes directrices pour la conservation et la manipulation des échantillons d'eau »,
- le guide FD T 90-523-2 « Qualité de l'Eau Guide de prélèvement pour le suivi de qualité des eaux dans l'environnement - Prélèvement d'eau résiduaire ».

Les points essentiels de ces référentiels techniques sont détaillés ci-après en ce qui concerne les conditions générales de prélèvement, la mesure de débit en continu, le prélèvement continu sur 24 heures à température contrôlée, l'échantillonnage et la réalisation de blancs de prélèvements.

3.1 - Opérateurs du prélèvement

Les opérations de prélèvement peuvent être réalisées sur le site par :

- le prestataire d'analyse,
- le sous-traitant sélectionné par le prestataire d'analyse,
- l'exploitant lui-même ou son sous-traitant.

Dans le cas où c'est l'exploitant ou son sous-traitant qui réalise le prélèvement, il est impératif qu'il dispose de procédures démontrant la fiabilité et la reproductibilité de ses pratiques de prélèvement et de mesure de débit. Ces procédures doivent intégrer les points détaillés aux paragraphes 3.2 à 3.6 ci-après et démontrer que la traçabilité de ces opérations est assurée.

3.2 - Conditions générales du prélèvement

Le volume prélevé devra être représentatif des flux de l'établissement et conforme avec les quantités nécessaires pour réaliser les analyses sous accréditation.

En cas d'intervention de l'exploitant ou d'un sous-traitant pour le prélèvement, le nombre, le volume unitaire, le flaconnage, la préservation éventuelle et l'identification des échantillons seront obligatoirement définis par le prestataire d'analyse et communiqués au préleveur. Le laboratoire d'analyse fournira les flaconnages (prévoir des flacons supplémentaires pour les blancs du système de prélèvement).

Les échantillons seront répartis dans les différents flacons fournis par le laboratoire selon les prescriptions des méthodes officielles en vigueur, spécifiques aux substances à analyser et/ou à la norme NF EN ISO 5667-3². Les échantillons acheminés au laboratoire dans un flaconnage d'une autre provenance devront être refusés par le laboratoire.

Le prélèvement doit être adressé afin d'être réceptionné par le laboratoire d'analyse au plus tard 24 heures après la fin du prélèvement, sous peine de refus par le laboratoire.

² La norme NF EN ISO 5667-3 est un Guide de Bonne Pratique. Quand des différences existent entre la norme NF EN ISO 5667-3 et la norme analytique spécifique à la substance, c'est toujours les prescriptions de la norme analytique qui prévalent.

3.3 - Mesure de débit en continu

La mesure de débit s'effectuera en continu sur une période horaire de 24 heures, suivant les normes en vigueur figurant dans le FDT-90-523-2 et les prescriptions techniques des constructeurs des systèmes de mesure.

Afin de s'assurer de la qualité de fonctionnement de ces systèmes de mesure, des contrôles métrologiques périodiques devront être effectués par des organismes accrédités, se traduisant par :

- pour les systèmes en écoulement à surface libre :
 - un contrôle de la conformité de l'organe de mesure (seuil, canal jaugeur, venturi, déversoir,..) vis-à-vis des prescriptions normatives et des constructeurs,
 - un contrôle de fonctionnement du débitmètre en place par une mesure comparative réalisée à l'aide d'un autre débitmètre;
- pour les systèmes en écoulement en charge :
 - un contrôle de la conformité de l'installation vis-à-vis des prescriptions normatives et des constructeurs,
 - un contrôle de fonctionnement du débitmètre par mesure comparative exercée sur site (autre débitmètre, jaugeage, ...) ou par une vérification effectuée sur un banc de mesure au sein d'un laboratoire accrédité.

Le contrôle métrologique aura lieu avant le démarrage de la première campagne de mesures, ou à l'occasion de la première mesure, avant d'être renouvelé à un rythme annuel.

3.4 - Prélèvement continu sur 24 heures à température contrôlée

Ce type de prélèvement nécessite du matériel spécifique permettant de constituer un échantillon pondéré en fonction du débit.

Les matériels permettant la réalisation d'un prélèvement automatisé en fonction du débit ou du volume écoulé, sont :

- soit des échantillonneurs monoflacons fixes ou portatifs, constituant un seul échantillon moyen sur toute la période considérée,
- soit des échantillonneurs multiflacons fixes ou portatifs, constituant plusieurs échantillons (en général 4, 6, 12 ou 24) pendant la période considérée. Si ce type d'échantillonneurs est mis en œuvre, les échantillons devront être homogénéisés pour constituer l'échantillon moyen avant transfert dans les flacons destinés à l'analyse.

Les échantillonneurs utilisés devront réfrigérer les échantillons pendant toute la période considérée.

Dans le cas où il s'avérerait impossible d'effectuer un prélèvement proportionnel au débit de l'effluent, le préleveur pratiquera un prélèvement asservi au temps, ou des prélèvements ponctuels si la nature des rejets le justifie (par exemple rejets homogènes en batchs). Dans ce cas, le débit et son évolution seront estimés par le préleveur en fonction des renseignements collectés sur place (compteurs d'eau, bilan hydrique, etc). Le préleveur devra lors de la restitution préciser la méthodologie de prélèvement mise en œuvre.

Un contrôle métrologique de l'appareil de prélèvement doit être réalisé périodiquement sur les points suivants (recommandations du guide FD T 90-523-2) :

- justesse et répétabilité du volume prélevé (volume minimal : 50 ml, écart toléré entre volume théorique et réel 5%),
- vitesse de circulation de l'effluent dans les tuyaux supérieure ou égale à 0,5 m/s.

Un contrôle des matériaux et des organes de l'échantillonneur seront à réaliser (voir blanc de système de prélèvement).

Le positionnement de la prise d'effluent devra respecter les points suivants :

- dans une zone turbulente.
- à mi-hauteur de la colonne d'eau.
- à une distance suffisante des parois pour éviter une contamination des échantillons par les dépôts ou les biofilms qui s'y développent.

3.5 - Échantillon

La représentativité de l'échantillon est difficile à obtenir dans le cas du fractionnement de certaines eaux résiduaires en raison de leur forte hétérogénéité, de leur forte teneur en MES ou en matières flottantes. Un système d'homogénéisation pourra être utilisé dans ces cas. Il ne devra pas modifier l'échantillon.

Le conditionnement des échantillons devra être réalisé dans des contenants conformes aux méthodes officielles en vigueur, spécifiques aux substances à analyser et/ou à la norme NF EN ISO 5667-3².

Le transport des échantillons vers le laboratoire devra être effectué dans une enceinte maintenue à une température égale à 5°C ± 3°C, et être accompli dans les 24 heures qui suivent la fin du prélèvement, afin de garantir l'intégrité des échantillons.

La température de l'enceinte ou des échantillons sera contrôlée à l'arrivée au laboratoire et indiquée dans le rapportage relatif aux analyses.

3.6 - Blancs de prélèvement

Blanc du système de prélèvement :

Le blanc de système de prélèvement est destiné à vérifier l'absence de contamination liée aux matériaux (flacons, tuyaux) utilisés ou de contamination croisée entre prélèvements successifs. Il appartient au préleveur de mettre en œuvre les dispositions permettant de démontrer l'absence de contamination. La transmission des résultats vaut validation et l'exploitant sera donc réputé émetteur de toutes les substances retrouvées dans son rejet, aux teneurs correspondantes. Il lui appartiendra donc de contrôler cette absence de contamination avant transmission des résultats.

Si un blanc du système de prélèvement est réalisé, il est recommandé de suivre les prescriptions suivantes :

 il devra être fait obligatoirement sur une durée de 3 heures minimum. Il pourra être réalisé en laboratoire en faisant circuler de l'eau exempte de micropolluants dans le système de prélèvement. Les critères d'acceptation et de prise en compte du blanc seront les suivants :

- si valeur du blanc < LQ : ne pas soustraire les résultats du blanc du système de prélèvement des résultats de l'effluent.
- si valeur du blanc >LQ et inférieure à l'incertitude de mesure attachée au résultat : ne pas soustraire les résultats du blanc du système de prélèvement des résultats de l'effluent,
- si valeur du blanc > l'incertitude de mesure attachée au résultat : la présence d'une contamination est avérée, le laboratoire devra refaire le prélèvement et l'analyse du rejet considéré.

Blanc d'atmosphère :

La réalisation d'un blanc d'atmosphère permet au laboratoire d'analyse de s'assurer de la fiabilité des résultats obtenus concernant les composés volatils ou susceptibles d'être dispersés dans l'air et pourra fournir des données explicatives à l'exploitant. - Le blanc d'atmosphère peut être réalisé à la demande de l'exploitant en cas de suspicion de présence de substances volatiles (BTEX, COV, chlorobenzène, mercure, ...) sur le site de prélèvement.

S'il est réalisé, il doit l'être obligatoirement et systématiquement :

- le jour du prélèvement des effluents aqueux,
- sur une durée de 24 heures ou en tout état de cause, sur une durée de prélèvement du blanc d'atmosphère identique à la durée du prélèvement de l'effluent aqueux. La méthodologie retenue est de laisser un flacon d'eau exempte de COV et de métaux exposé à l'air ambiant à l'endroit où est réalisé le prélèvement 24 h asservi au débit,
- les valeurs du blanc d'atmosphère seront mentionnées dans le rapport d'analyse et en aucun cas soustraites des autres.

4 - ANALYSES

Toutes les procédures analytiques doivent être démarrées si possible dans les 24 h et en tout état de cause 48 heures au plus tard après la fin du prélèvement.

Toutes les analyses doivent rendre compte de la totalité de l'échantillon (effluent brut, MES comprises) en respectant les dispositions relatives au traitement des MES reprises cidessous, hormis pour les diphényléthers polybromés.

Dans le cas des métaux, l'analyse demandée est une détermination de la concentration en métal total contenu dans l'effluent (aucune filtration), obtenue après digestion de l'échantillon selon les normes en vigueur :

- norme ISO 15587-1 « Qualité de l'eau Digestion pour la détermination de certains éléments dans l'eau Partie 1 : digestion à l'eau régale » ou
- norme ISO 15587-2 « Qualité de l'eau Digestion pour la détermination de certains éléments dans l'eau Partie 2 : digestion à l'acide nitrique ».

Pour le mercure, l'étape de digestion complète sans filtration préalable est décrite dans les normes analytiques spécifiques à cet élément.

Dans le cas des alkylphénols, il est demandé de rechercher simultanément les nonylphénols, les octylphénols ainsi que les deux premiers homologues d'éthoxylates³ de nonylphénols (NP10E et NP20E) et les deux premiers homologues d'éthoxylates³ d'octylphénols (OP10E et OP20E). La recherche des éthoxylates peut être effectuée sans surcoût conjointement à celle des nonylphénols et des octylphénols par l'utilisation du projet de norme ISO/DIS 18857-2⁴.

Certains paramètres de suivi habituel de l'établissement, à savoir la DCO (Demande Chimique en Oxygène) ou COT (Carbone Organique Total) en fonction de l'arrêté préfectoral en vigueur, et les MES (Matières en Suspension) seront analysés systématiquement dans chaque effluent selon les normes en vigueur (cf. notes^{5,6,7} et ⁸) afin de vérifier la représentativité de l'activité de l'établissement le jour de la mesure.

Les performances analytiques à atteindre pour les eaux résiduaires sont indiquées en annexe 5.2. Elles sont issues de l'exploitation des limites de quantification transmises par les prestataires d'analyses dans le cadre de l'action RSDE depuis 2005.

Prise en compte des MES

Le laboratoire doit préciser et décrire de façon détaillée les méthodes mises en œuvre en cas de concentration en MES > 50 mg/l.

Pour les paramètres visés à l'annexe 5.1 (à l'exception de la DCO, du COT et des MES), il est demandé :

- si 50 < MES < 250 mg/l : réaliser 3 extractions liquide/liquide successives au minimum sur l'échantillon brut sans séparation,
- si MES ≥ 250 mg/l: analyser séparément la phase aqueuse et la phase particulaire après filtration ou centrifugation de l'échantillon brut, sauf pour les composés volatils pour lesquels le traitement de l'échantillon brut par filtration est à proscrire. Les composés volatils concernés sont:
- si MES ≥ 250 mg/l: analyser séparément la phase aqueuse et la phase particulaire après filtration ou centrifugation de l'échantillon brut, sauf pour les composés volatils pour lesquels le traitement de l'échantillon brut par filtration est à proscrire. Les composés volatils concernés sont : 3,4 dichloroaniline, épichlorhydrine, tributylphosphate, acide chloroacétique, benzène, éthylbenzène, isopropylbenzène, toluène, xylènes (somme o,m,p), 1,2,3 trichlorobenzène, 1,2,4 trichlorobenzène, 1,3,5 trichlorobenzène, chlorobenzène, 1,2 dichlorobenzène, 1,3 dichlorobenzène, 1,4 dichlorobenzène, 1 chloro 2 nitrobenzène, 1 chloro 3 nitrobenzène, 1 chloro 4 nitrobenzène, 2 chlorotoluène, 3 chlorotoluène. 4

³ Les éthoxylates de nonylphénols et d'octylphénols constituent à terme une source indirecte de nonylphénols et d'octylphénols dans l'environnement.

⁴ ISO/DIS 18857-2 : Qualité de l'eau – Dosage d'alkylphénols sélectionnés- Partie 2 : Détermination des alkylphénols, d'éthoxylates d'alkylphénol et bisphénol A – Méthode pour échantillons non filtrés en utilisant l'extraction sur phase solide et chromatographie en phase gazeuse avec détection par spectrométrie de masse après dérivatisation. Disponible auprès de l'AFNOR, commission T 91 M et qui sera publiée prioritairement en début 2009.

⁵ NF T 90-101 : Qualité de l'eau : détermination de la demande chimique en oxygène (DCO) 6 NF EN 872 : Qualité de l'eau : dosage des matières en suspension – Méthode par filtration sur filtre en fibres de verre

⁷ NF EN 1484 – Analyse des eaux : lignes directrices pour le dosage du carbone organique total et du carbone organique dissous

⁸ NF T 90-105-2 : Qualité de l'eau : dosage des matières en suspension - Méthode par centrifugation

chlorotoluène, nitrobenzène, 2 nitrotoluène, 1,2 dichloroéthane, chlorure de méthylène, chloroforme, tétrachlorure de carbone, chloroprène, 3 chloropropène, 1,1 dichloroéthane, 1,1 dichloroéthylène, 1,2 dichloroéthylène, hexachloroéthane, 1,1,2,2 tétrachloroéthane, Tétrachloroéthylène, 1,1,1 trichloroéthane, 1,1,2 trichloroéthane, trichloroéthylène, chlorure de vinyle, 2 chloroaniline, 3 chloroaniline, 4 chloroaniline et 4 chloro 2 nitroaniline,

 la restitution pour chaque effluent chargé (MES ≥ 250 mg/l) sera la suivante pour l'ensemble des substances de l'annexe 5.1 : valeur en μg/l obtenue dans la phase aqueuse, valeur en μg/kg obtenue dans la phase particulaire et valeur totale calculée en μg/l.

L'analyse des diphényléthers polybromés (PBDE) n'est pas demandée dans l'eau, et sera à réaliser selon la norme ISO 22032 uniquement sur les MES dès que leur concentration est ≥ à 50 mg/l. La quantité de MES à prélever pour l'analyse devra permettre d'atteindre une LQ équivalente dans l'eau de 0,05 µg/l pour chaque BDE.

5 - TRANSMISSION DES RÉSULTATS

L'application informatique GIDAF (Gestion Informatisée des Données d'auto-surveillance fréquente) permettra à terme la saisie directe des informations demandées par l'annexe 5.3 et leur télétransmission à l'inspection et à l'INERIS, chargé du suivi de la qualité des prestations des laboratoires et du traitement des données issues de cette seconde campagne d'analyse des substances dangereuses. L'extension nationale de cette application informatique actuellement testée par certaines DRIRE est prévue pour le courant de l'année 2009.

Dans l'attente de l'utilisation généralisée de cet outil, c'est par le biais du site http://rsde.ineris.fr que l'annexe 5.4 (qui reprend les éléments demandés dans l'annexe 5.3) doit être transmise à l'INERIS par l'exploitant.

Les résultats d'analyses ainsi que les éléments relatifs au contexte de la mesure analytique des substances décrit à l'annexe 5.4 devront être adressés mensuellement par l'exploitant à l'inspection par courrier.

ANNEXE 4 : Liste des substances dangereuses et leur NQE

Famille	Substance	Code SANDRE	Catégorie de Substance : -1 = dangereuses prioritaires, - 2 = prioritaires, - 3 = pertinentes liste 1, - 4 = pertinentes liste 2	Limite de quantificatio n à atteindre par les laboratoires : LQ en µg/l (source : annexe 5.2 de la circulaire du 05/01/2009)	NQE MA Ou NQE p en μg/l
Alkylphénols	Nonylphénols	1957	1	0,1	0,3
	NP10E	demande en cours	1	0,15	0,3
	NP20E	demande en cours	1	0,1*	0,3
	Octylphénols	1920	2	0,1	0,1
	OP10E	demande en cours	_ 2	0,1*	0,1
	OP2OE	demande en cours	2	0,1*	0,1
Anilines	2 chloroaniline	1593	4	0,1	0,64
	3 chloroaniline	1592	4	0,1	1,3
	4 chloroaniline	1591	4	0,1	1
	4-chloro-2 nitroaniline	1594	4	0,1	Sans
	3,4 dichloroaniline	1586	4	0,1	sans
Autres	Chloroalcanes Cor Co	1955	1	10	0,4
	Biphényle	1584	4	0,05	1,7
	Epichlorhydrine	1494	4	0,5	1,3
	Tributylphosphate	1847	4	0,1	82
	Acide chloroacétique	1465	4	25	0,58
BDE	Tétrabromodiphénylé ther (BDE 47)	2919	2	La quantité de MES à prélever pour	∑ (incluant le Tribromodiphénylét her Tri BDE 28)=
	Pentabromodiphényl éther (BDE 99)	2916	1	l'analyse devra permettre	0.0005
	Pentabromodiphényl éther (BDE 100)	2915	1	d'atteindre une LQ dans l'eau de	
	Hexabromodiphénylé ther BDE 154	2911	2	0,05µg/l pour chaque BDE.	
	Hexabromodiphénylé ther BDE 153	2912	2		
	Heptabromodiphényl éther BDE 183	2910	2		sans
	Décabromodiphénylé ther	1815	2		sans

	(BDE 209)				
BTEX	Benzène	1114	2	1	10
	Ethylbenzène	1497	4	1	20
	Isopropylbenzène	1633	4	1	22
	Toluène	1278	4	1	74
	Xylènes (Somme				10
	o,m,p)	1780	4	2	
Chlorobenzè	Hexachlorobenzène	1199	1	0,01	0,01
nes	Pentachlorobenzène	1888	1	0,02	0,007
	1,2,3 trichlorobenzène	1630	2	1	∑ = 0,4
	1,2,4 trichlorobenzène	1283	2	1	
	1,3,5 trichlorobenzène	1629	2	1	
	Chlorobenzène	1467	4	1	32
	1,2 dichlorobenzène	1165	4	1	10
	1,3 dichlorobenzène	1164	4	1	10
	1,4 dichlorobenzène	1166	4	1	20
	1,2,4,5 tétrachlorobenzène	1631	4	0,05	0,32
	1-chloro-2- nitrobenzène	1469	4	0,1	26
	1-chloro-3- nitrobenzène	1468	4	0,1	3,2
	1-chloro-4- nitrobenzène	1470	4	0,1	2
Chlorophéno	Pentachlorophénol	1235	2	0,1	0,4
ls	4-chloro-3- méthylphénol	1636	4	0,1	9,2
	2 chlorophénol	1471	4	0,1	6
	3 chlorophénol	1651	4	0,1	4
	4 chlorophénol	1650	4	0,1	4
	2,4 dichlorophénol	1486	4	0,1	10
	2,4,5 trichlorophénol	1548	4	0,1	10
	2,4,6 trichlorophénol	1549	4	0,1	4,1
COHV	Hexachloropentadièn e	2612	4	0,1	?
	1,2 dichloroéthane	1161	2	2	10
	Chlorure de méthylène (dichlorométhane)	1168	2	5	20
	Hexachlorobutadiène	1652	1	0,5	0,1
	Chloroforme	1135	2	1	2,5
	Tétrachlorure de carbone	1276	3	0,5	12
	Chloroprène	2611	4	1	32
	3-chloroprène (chlorure d'allyle)	2065	4	1	0,34
	1,1 dichloroéthane	1160	4	5	92
	1,1 dichloroéthylène	1162	4	2,5	11,6

	1,2 dichloroéthylène	1163	4	5	1100
	Hexachloroéthane	1656	4	1	?
	1,1,2,2 tétrachloroéthane	1271	4	1	?
	Tétrachloroéthylène	1272	3	0,5	10
	1,1,1 trichloroéthane	1284	4	0,5	26
	1,1,2 trichloroéthane	1285	4	1	300
	Trichloroéthylène	1286	3	0,5	10
	Chlorure de vinyle	1753	4	5	0,5
HAP	Anthracène	1458	1	0.01	0.1
	Fluoranthène	1191	2	0,01	0,1
	Naphtalène	1517	2	0,05	2,4
	Acénaphtène	1453	4	0,01	0,7
	Benzo (a) Pyrène	1115	1	0.01	0,05
	Benzo (k) Fluoranthène	1117	1	0,01	∑ = 0,03
	Benzo (b) Fluoranthène	1116	1	0,01	
	Benzo (g,h,i) Pérylène	1118	1	0,01	∑ = 0,002
	Indeno (1,2,3-cd) Pyrène	1204	1	0,01	
Métaux					Classe 1 = ≤
	Cadmium et ses composés [†]	1388	1	2	0,08 Classe 2 = 0,08 Classe 3 = 0,09 Classe 4 = 0,15 Classe 5 = 0,25
	Plomb et ses composés	1382	2	5	7,2
	Mercure et ses composés	1387	1	0,5	0,05
	Nickel et ses composés	1386	2	10	20
	Arsenic et ses composés	1369	4	5	En fonction du bruit de fond
	Zinc et ses composés	1383	4	10	En fonction du bruit de fond
	Cuivre et ses composés	1392	4	5	En fonction du bruit de fond
	Chrome et ses composés	1389	4	5	En fonction du bruit de fond
Organoétain	Tributylétain cation	2879	1	0,02	0,0002
S	Dibutylétain cation	1771	4	0,02	?
	Monobutylétain cation	2542	4	0,02	?
	Triphénylétain cation	demande en cours	4	0,02	?
PCB	PCB 28	1239	4	0,01	0,001
	PCB 52	1241	4	0,01	0,001

⁹ Pour le Cadmium et ses composés, les valeurs retenues pour les NQE varient en fonction de la dureté de l'eau telle que définie suivant les cinq classes suivantes : classe 1 : <40 mg CaCO3/l, classe 2 : 40 à <50 mg CaCO3/l, classe 3 : 50 à <100 mg CaCO3/l, classe 4 : 100 à <200 mg CaCO3/l et classe 5 : ≥200 mg CaCO3/l.

	PCB 101	1242	4	0,01	0,001
	PCB 118	1243	4	0,01	0,001
	PCB 138	1244	4	0,01	0,001
	PCB 153	1245	4	0,01	0,001
	PCB 180	1246	4	0,01	0,001
Pesticides	Trifluraline	1289	2	0,05	0,03
	Alachlore	1101	2	0,02	0,3
	Atrazine	1107	2	0,03	0,6
	Chlorfenvinphos	1464	2	0,05	0,1
	Chlorpyrifos	1083	2	0,05	0,03
	Diuron	1177	2	0,05	0,2
	alpha Endosulfan	1178	1	0,02	$\Sigma = 0.005$
	béta Endosulfan	1179	1	0.02	
	alpha Hexachlorocyclohexa ne	1200	1	0,02	∑ (incluant les isomères ayant les codes SANDRE 1201 et i202) =
	gamma isomère Lindane	1203	1	0,02	0,02
	Isoproturon	1208	2	0,05	0,3
	Simazine	1263	2	0,03	1

ANNEXE 5 : LISTE DES SUBSTANCES DANGEREUSES ET CRITÈRES DE FLUX ASSOCIÉS

1. substances dangereuses prioritaires et autres substances de la liste I de la directive 2006/11/CE

	Code	Catégorie de Substance	Colonne A Flux journalier d'émission en g/jour :	Colonne B Flux journalier d'émission en g/jour
Nonylphénols	6598 = 1957+1958	\	2	10
Chloroalcanes C ₁₀ -C ₁₃	1955	,	2	10
Hexachlorobenzène	1199	,	2	5
Pentachlorobenzène	1888	-	2	2
Hexachlorobutadiène	1652	-	2	10
Tétrachlorure de carbone	1276	3	2	5
Tétrachloroéthylène	1272	က	2	5
Trichloroéthylène	1286	က	2	5
Anthracène	1458	1	2	10
HAP (somme des 5)		1		
Benzo [a] Pyrène	1115	1	2	10
Benzo [k] Fluoranthène	1117	1	2	10
Benzo [b] Fluoranthène	1116	1	2	10
Benzo [g,h,i] Pérylène	1118	-	2	10
Indeno [1,2,3-cd] Pyrène	1204	-	2	10
Cadmium et ses composés	1388	-	2	10
Mercure et ses composés	1387	-	2	5
Tributylétain cation	2879	-	2	2

Endosulfan (alpha, béta)	1178	-	2	5
			2	5
Hexachlorocyclohexane	1200		c	L
somme des isomères	1202		7	o
gamma isomère lindane	1203	1	2	2
diphényléthers				
pentabromodiphényléther	2915	1	2	2
pentabromodiphényléther	2916	•	2	2

2. substances prioritaires et substances spécifiques de l'état écologique :

Substance	Code	Catégorie de Substance	Colonne A Flux journalier d'émission en g/jour	Colonne B Flux journalier d'émission en g/jour
phtalate de bis(2-éthylhexyle) DEHP	6616 (ancien 1461)	2	4	30
Octylphénols	6600 =1959+ 1920	2	10	30
Benzène	1114	2	20	100
1,2,3 trichlorobenzène	1630	- 2	4	30
1,2,4 trichlorobenzène	1283	2	4	30
1,3,5 trichlorobenzène	1629	2	4	30
Pentachlorophénol	1235	2	4	30
1,2 dichloroéthane	1161	2	20	100
Chlorure de méthylène (dichlorométhane)	1168	2	20	100
Chloroforme (trichlorométhane)	1135	2	20	100
Fluoranthène	1191	2	4	30
Naphtalène	1517	2	20	100
Arsenic et ses composés	1369	4	10	100
Chrome et ses composés	1389	4	200	200
Cuivre et ses composés	1392	4	200	500

Zinc et ses composés	1383	4	200	500	
Atrazine	1107	2	4	30	
Diuron	1177	2	4	30	
soproturon	1208	2	4	30	
Simazine	1263	2	4	30	
Plomb et ses composés	1382	2	20	100	
Nickel et ses composés	1386	2	20	100	
Alachlore	1101	2	4	100	
Trifluraline	1289	2	4	100	
Chlorfenvinphos	1464	2	4	100	
Chlorpyrifos (ethylchlorpyrifos)	1083	2	4	100	

3 Autres substances dangereuses:

Substance	Code	Catégorie de Substance	Colonne A Flux journalier d'émission en g/jour	Colonne B Flux journalier d'émission en g/jour :
2 chloroaniline	1593	4	300	900
3 chloroaniline	1592	4	300	200
4 chloroaniline	1591	4	300	200
4-chloro-2 nitroaniline	1594	4	300	500
3,4 dichloroaniline	1586	4	300	200
Biphényle	1584	4	300	2000
Epichlorhydrine	1494	4	300	200
Tributylphosphate	1847	4	300	2000
Acide chloroacétique	1465	4	300	200
Ethylbenzène	1497	4	300	1000
Isopropylbenzène	1633	. 4	300	1000
Toluène	1278	4	300	1000
Xylènes (Somme o,m,p)	1780	4	300	500
Chlorobenzène	1467	4	300	1000
1,2 dichlorobenzène	1165	4	300	200
1,3 dichlorobenzène	1164	4	300	500
1,4 dichlorobenzène	1166	4	300	900
1,2,4,5 tétrachlorobenzène	1631	4	300	900
1-chloro-2-nitrobenzène	1469	4	300	900
1-chloro-3-nitrobenzène	1468	4	300	200
1-chloro-4-nitrobenzène	1470	4	300	900
4-chloro-3-méthylphénol	1636	4	300	200

2 chlorophénol	1471	4	300	200
3 chlorophénol	1651	4	300	200
4 chlorophénol	1650	4	300	900
2,4 dichlorophénol	1486	4	300	200
2,4,5 trichlorophénol	1548	4	300	200
2,4,6 trichlorophénol	1549	4	300	500
Hexachloropentadiène	2612	4	300	1000
Chloroprène	2611	4	300	1000
3-chloroprène (chlorure d'allyle)	2065	4	300	1000
1,1 dichloroéthane	1160	4	300	2000
1,1 dichloroéthylène	1162	4	300	2000
1,2 dichloroéthylène	1163	4	300	2000
Hexachloroéthane	1656	4	300	1000
1,1,2,2 tétrachloroéthane	1271	4	300	2000
,1,1 trichloroéthane	1284	4	300	1000
1,1,2 trichloroéthane	1285	4	300	2000
Chlorure de vinyle	1753	4	300	500
Acénaphtène	1453	4	300	500
Dibutylétain cation	1771	4	300	500
Monobutylétain cation	2542	4	300	500
Triphénylétain cation	6372	4	300	500
2-chlorotoluène	1602	4	300	500
3-chlorotoluène	1601	4	300	500
4-chlorotoluène	1600	4	300	500
2-nitrotoluène	2613	4	300	1000
Nitrobenzène	2614	4	300	1000
Octylphénols	1920	2	10	30
Ethoxylate de nonylphénol	6366	2	0	Ç

Ethoxylate de nony NP2OE	nonylphénol 6369	Ω		
Ethoxylate d'octy OP10E	d'octylphénol 6370	2	10	30
Diphényléthers bromés	2911			
dont SDP	2912	<u> </u>		
Pentabromodiphényléther		_	c	Ľ
(2916)	2916	+	7	0
Pentabromodiphényléther	r 2919			
(2915)	2920			
	1239			
	1241	*:		
PCB	1242			
(PCB 28, 52, 101, 118, 138, 1243	3, 138, 1243	4	2	5
153, 180)	1244			
	1245			
	1246			

Catégories de Substance

-	Substances Dangereuses Prioritaires issues de l'annexe 8 de l'arrêté ministériel du 25 janvier 2010 modifié
2	Substances Prioritaires issues de l'annexe 8 de l'arrêté ministériel du 25 janvier 2010 modifié
m	Autres substances dangereuses prioritaires issues de l'annexe 8 de l'arrêté ministériel du 25 janvier 2010 modifié et issues de la liste I de la directive 2006/11/CE (anciennement Directive 76/464/CEE) et ne figurant pas à l'annexe X de la DCE
4	Autres substances pertinentes issues de la liste II de la directive 2006/11/CE (anciennement Directive 76/464/CEE) et autres substances, non SDP ni SP, figurant à l'annexe de l'arrêté ministériel du 20 avril 2005 modifié (NQE), ou dans les tableaux D et E de la circulaire du 07/05/07 (NQE provisoires indiquées NQEp)
2	Autres substances mesurées dans le cadre de l'opération RSDE depuis 2009

